Wissenschaftstransfer
Labor für Verfahrenstechnik
Projekte aus der Forschungsdatenbank der Hochschule Osnabrück im Bereich Verfahrenstechnik
Forschung und Technologietransfer in der Verfahrenstechnik
Lichtmikroskope
Auflicht- und Durchlicht- Fluorenzenzmikroskop,
30l Bioreaktor
präparative Chromatograpfie
UV/VIS- Spektrometer
Blue-Sense-Standardbiogasbestimmung
Inkubatoren zur Anzucht von Mikroorganismen einschl. Mikroalgen
BSB/CSB-Analytik
Rotationsverdampfer
Destillation/Rektifikation
kontinuierliche Rektifikation
200m Rohrreaktor
Vakuum-Gefriertrockner
Bombenkalorimeter
Gasanalytik
Elektrochemische Rauschmessstation, Korrosionskammer,
FOS/TAC-Bestimmung
Windkanalversuchsanlage
Fotothermieversuchsanlage
Fotovoltaikversuchsanlage
Membranversuchsanlagen
Zentrifugen, Rührer, Pumpen
Werkstoff- und Verfahrensentwicklung für die Herstellung Ressourcen schonender Korrosionsschutzschichten für hochbeanspruchte Komponenten in der alternativen Energieerzeugung (Kurzform: RESKORR) (2012)
Prof. Dr. Angela Hamann-Steinmeier
Folgeantrag:Nanopartikelverstärkte Gleitlacksysteme für Verschleißschutzanwendungen in tribologisch hochbelasteten Anwendungen (NanoVer) (2010)
Prof. Dr. Angela Hamann-Steinmeier
HTC in Niedersachsen Entwicklung, Optimierung und Modellierung einer kontinuierlich arbeitenden Pilotanlage (2010 )
Prof. Dr. Petra von Frieling
Gärresteaufbereitung (2013)
Prof. Dr. Sandra Rosenberger
Modulare wiss. Weiterbildung in Erneuerbaren Energien, MOWIEE (2012 )
Prof. Dr. Sandra Rosenberger
Verlängerungsantrag Abwasserbehandlung (2012)
Prof. Dr. Sandra Rosenberger
Klimaschutzteilkonzept (2011)
Prof. Dr. Sandra Rosenberger
Schweers und Helmus keine Treffer
„Abwärmenutzung von Industrieöfen mit dem ORC-Prozess“ von Sebastian Haucke.
Betreut durch Prof. Dr. Petra von Frieling
„Analyse und Optimierung einer bestehenden Kühlschmierstoffaufbereitungsanlage zur Erhöhung der Prozesssicherheit“ von Andre Beckers.
Betreut durch Prof. Dr. Frank Peter Helmus
„Aufbau und Inbetriebnahme eines Wärmetauschers zur Ermittlung des Wärmetransfers"
betreut durch Prof. Dr. Petra von Frieling
„Elektrizitätsversorgung einer Kläranlage durch Windstrom und Energiespeicher – technische und ökonomische Potenziale“ von Marc Barlag.
Betreut durch Prof. Dr. Sandra Rosenberger
„Energetische Optimierung durch Abwärmenutzung in der Bäckerei Wellmann“ von Olga Druker.
Betreut durch Prof. Dr. Sandra Rosenberger
„Energieanalyse einer Kläranlage mit anaerober Schlammstabilisierung“ von Timo Watzelt.
Betreut durch Prof. Dr. Angela Hamann- Steinmeier
„Entwicklung eines kinetischen Modells der Hydrothermalen Carbonisierung (HTC) ausgewählter Biomasse“ von Miriam Bruns.
Betreut durch Prof. Dr. Petra von Frieling
„Optimierung der Filtrationsstufe für den Kühlschmierkreislauf einer Kupferwarmwalzanlage“ von Alexander Fischer.
Betreut durch Prof. Dr. Frank Peter Helmus
„Optimierung einer Biowäscheranlage zur Reinigung von Abluft aus der Hefetrocknung“ von Viktor Schewa.
Betreut durch Prof. Dr. Angela Hamann-Steinmeier
- Nachhaltige Biogaserzeugung im regionalen Raum
- Optimierung eines Membranbelebungsreaktors zur Abwasserbehandlun
- CENIOS
At the Photoreaction Technology Group we are interested in the development of technologies to make "Solar Fuels" a reality: liquid fuels (hydrocarbons or oxygenates) produced by the reaction of CO2 with water, using sunlight as the direct source of the necessary free energy. Towards that goal we are investigating the chemistry and process engineering of relevant heterogeneous photocatalytic systems. For more details on our work see below.
Solar Fuels
It is estimated that humans currently consume a total of 170 x 1012 Wh per year (figures from 2016). This energy is produced overwhelmingly, almost 90 %, by the combustion of reduced carbon minerals (oil, coal and natural gas), traditional renewal sources supplying about 2 %, and the rest being obtained between hydroelectric and nuclear plants. The combustion of all of this carbon produces about 30 x 109 t of CO2 yearly, which is nowadays treated as a useless residue. Can this CO2 be reused to produce useful fuels?
The conversion of CO2 into fuels (plus oxygen) requires at least the same amount of energy as the heat liberated by the combustion of the fuel, and so the fuel can be seen as a chemical way to store this energy. In fact common organic fuels have energy densities much higher than other common energy storage systems:
The whole of the energy consumed by humans in one year, falls on the Earth as light (from UV to near IR) in only 1 hour. This amounts to an average power of ca. 1000 W per square meter. Using this power, and assuming 100 % efficiency in the following chemical photoreaction to produce gasoline (n-octane) out of water and CO2
it would be possible to obtain approx. 0.1 L of gasoline per square meter of sunshine per hour. For the sake of comparison with the current best experimental results, this amounts to roughly 105 µmol/h (per square meter). The table below shows a selection of the most active photocatalytic systems for the reduction of CO2 developed so far:
Two important facts are apparent from this table: (i) the yields are at best 104 times lower than theoretically possible, and (ii) the fuels formed are predominantly small molecules (gases, mostly CH4).
The challenge thus remains to develop photocatalysts and reaction conditions which lead the to the formation to C-C bonds, so that larger molecules (liquids at room temperature) are formed at economically useful rates.
Research
Our research focuses on the development of photocatalytic processes to convert carbon dioxide into useful fuels using light as a direct source of energy.
Most of the research nowadays in this field focuses on the synthesis, mechanistic studies and the testing of catalysts under a rather limited range of physical conditions. Complementary to these efforts, our contribution to the challenge consists in investigating catalysts under broad ranges of reaction conditions (temperature, pressure, residence time), where new regimes of reactivity are likely to occur. Hence, the design and construction of photo-reactors which can operate under non-standard conditions plays an important role in our work.
Several types of photocatalytical reactions are currently being investigated by our group. As an example, one approach is to try to couple photocatalytical water splitting with the reduction of CO2 towards CO occurring on the surface of a semiconductor:
and then let the H2 and CO thus formed undergo the common thermal Fischer-Tropsch chemistry, taking place on a co-catalyst (typically Fe or Co oxides) to yield hydrocarbons:
Preliminary experiments based on this approach have been performed using TiO2 nanoparticles as the semiconductor photocatalyst and CoO as Fischer-Tropsch catalyst. Only traces of of C>1 products have been detected so far (ethane, acetaldehyde, propanoe), with CH4 being the main product formed. The study of other catalytic systems is also underway.
Equipment
A system has been built comprising a continuous flow photo-reactor capable of operating in a broad rage of temperatures (up to 350 °C) and pressures (up to 8 bar). The reactor is fed with reactant gas, and the reaction educt is then analyzed online by means of a gas chromatograph equipped with FID and TCD dectectors as well as a mass spectrometer.
A new version of photo-reactors capable of operating at temperatures up to 500 °C and pressures up to 20 bar has been designed and built and currently being used for the study of methane dry photo-reforming.
Group Members / Contact
Prof.-Dr. Elke Schweers
Fakultät Ingenieurwissenschaften und Informatik
Telefon: +49 541 969 3079
E-Mail: e.schweers@hs-osnabrueck.de
Dr. Francesc Molins
Fakultät Ingenieurwissenschaften und Informatik
Telefon: +49 541 969 3284
E-Mail: f.molins@hs-osnabrueck.de
Publications
"Reaction condition effects on the reaction kinetics of H2 photocatalytic production from Ethanol in the gas phase over Pt/TiO2", F. Molins, K. Küpper, E. Schweers. Submitted for publication.
"Investigation of reaction condition effects on photocatalytic methane production over P25-TiO2/Pt with CO2 and H2O gas. Applied and mechanistic implications", F. Molins, K. Küpper, E. Schweers, ChemPhotoChem, 2020, 4, 526. http://dx.doi.org/10.1002/cptc.202000018
Conferences
Prof-Dr. E. Schweers, Dr. F. Molins, Photo-thermo-catalytical H2 production: reaction condition effects on photo-reformation in the gas phase. ProcessNet-Jahrestagung 2020, 21–24.09. 2020.
Prof-Dr. E. Schweers, Dr. F. Molins, Towards sun fuels from CO2 in a single-step photoreaction. ProcessNet-Jahrestagung 2018, 10–13.09.2018, Aachen.
Funding
We are thankful to the Niedersächsisches Ministerium für Wissenschaft und Kultur for financial support.