Real-World Performance of current Mesh Protocols in a small-scale Dual-Radio Multi-Link Environment

Manuel Hachtkemper

manuel.hachtkemper@inf.h-brs.de

Michael Rademacher michael.rademacher@h-brs.de Karl Jonas karl.jonas@h-brs.de

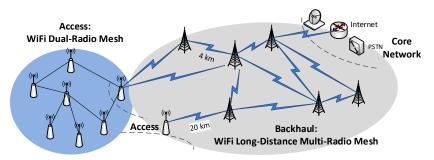
22. ITG Fachtagung Mobilkommunikation May 10, 2017

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

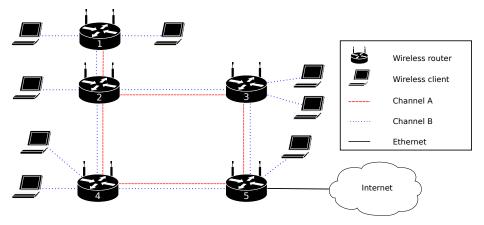
Table of Contents

Introduction and motivation

Dual-radio mesh networks

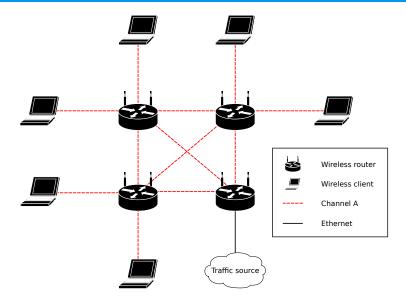

Setups

Test procedure

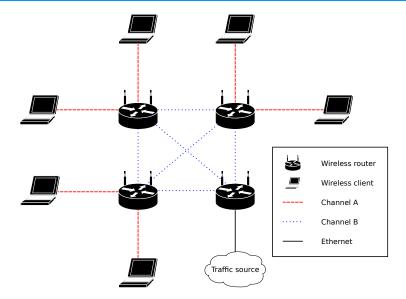

Results

Conclusion

- ✓ Using a cost-efficent technology to bring connectivity to rural areas.
- Local distribution of connectivity is the next step.
- Dual-Radio WiFi Mesh Networks are (among others) one option:
- Which mesh protocol to prefer?
 [Babel, B.A.T.M.A.N. V, BMX7, OLSRv2]
- Which dual-radio setup to prefer?

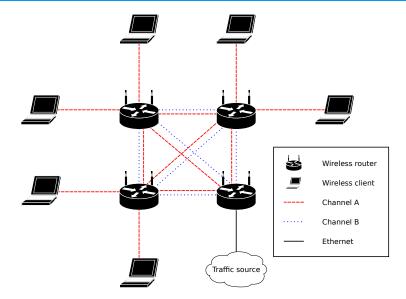


Dual-radio mesh networks

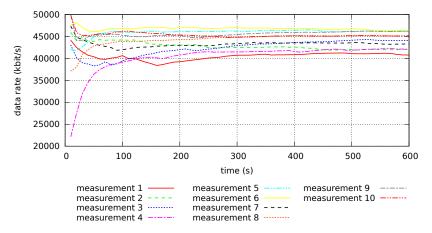


Example of a wireless mesh network with two radios attached to each router.

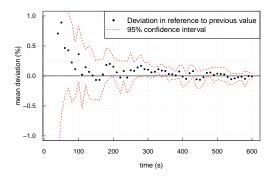
Setup 1



Setup 1 for the experiments: One radio for everything on one channel; second radio unused.


Setup 2 for the experiments: One radio for the mesh on one channel and another radio with a different channel for the clients.

Setup 3


Setup 3 for the experiments: One channel for both mesh network and clients and a second radio with another channel for the mesh network.

- Has the system to "warm-up"? For how long?
- How to generate traffic? And for how long?
- How to get the measurement reproducible?
- How to prevent that different measurements affect each other?

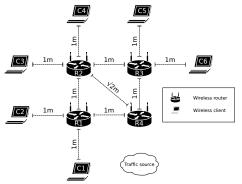
Development of the data rate over a period of 10 minutes. Intermediate values were taken every 10 seconds and always the overall data rate since the start is calculated. (Babel, Setup 3)

Length of measurements

Development of the data rate over a period of 10 minutes. The mean percentage deviation in reference to previous mean value is shown. (Babel, Setup 3)

Percentage deviation:

$$rel_dev_{x_{10}-x_{20}} = \frac{x_{20}-x_{10}}{x_{10}} * 100$$

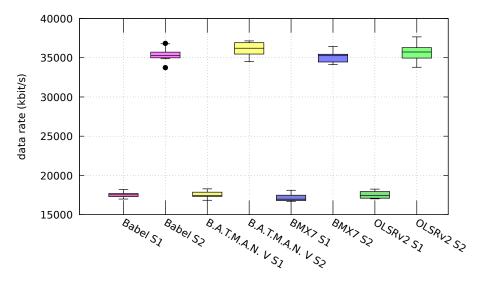

Confidence interval:

$$[\overline{x} \pm t_{n-1,1-\alpha/2} * \frac{s}{\sqrt{n}}]$$

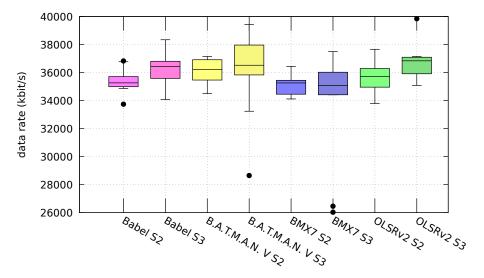
- $\alpha = {\rm confidence} \,\, {\rm level}$
- n = number of observations

$$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x})^2}$$

Reproducibility / test procedure


Physical placement of nodes.

Picture of the setup (in an underground parking lot).


- 1. Using dual-radio routers compared to single-radio routers doubles the achievable data rate for clients.
 - 2 channels = 2 * bandwidth = 2 * data rate
- 2. The mesh routing protocol influences the results, although all routers are direct neighbors.
 - Different overhead for each protocol
- 3. Using both channels for the mesh (Setup 3) is worse than having a dedicated channel for all clients and one for the mesh (Setup 2).
 - More mesh protocol overhead
 - The routing protocol may use the channel which is occupied by the clients

Results: Single channel (S1) vs dual channel (S2)

Box plot of the results of Setup 1 and 2. Each box plot consists of ten measurements, where each data point is the sum of the six client results.

Dedicated access (S2) vs mixed mesh/access (S3)

Box plot of the results of Setup 2 and 3. Each box plot consists of ten measurements, where each data point is the sum of the six client results.

- Mesh protocols have specific features for multi-radio networks.
- ► Expected: Dual-radio routers = 2 * data rate of single-radio routers.
- Not expected: Different mesh protocols lead to similar results (in our scenario).
- Not expected: Using both radios within the mesh is equally good and should be preferred (in our scenario).
 - The protocol overhead is negligible in small networks

Are there any questions?

Manuel Hachtkemper

manuel.hachtkemper@inf.h-brs.de

Michael Rademacher

michael.rademacher@h-brs.de

Karl Jonas

karl.jonas@h-brs.de

- L. Cerdà-Alabern, A. Neumann, and L. Maccari. "Experimental Evaluation of BMX6 Routing Metrics in a 802.11an Wireless-Community Mesh Network". In: Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on. 2015, pp. 770–775. DOI: 10.1109/FiCloud.2015.28.
- [2] Open Mesh. <u>Network Wide Multi Link Optimization (technical documentation)</u>. https://www.open-mesh.org/projects/batman-adv/wiki/Wetwork-wide-multi-link-optimization. [Online; last visit 2016-11-20]. 2016.
- J. Chroboczek. Diversity Routing for the Babel Routing Protocol. Internet-Draft draft-chroboczek-babel-diversity-routing-00. IETF Secretariat, 2014. URL: http://www.ietf.org/internet-drafts/draft-chroboczek-babel-diversity-routing-00.txt.
- [4] Open Mesh. B.A.T.M.A.N. V. https://www.open-mesh.org/projects/batman-adv/wiki/BATMAN_V. [Online; last visit 2016-11-8]. 2016.
- [5] G. Daneels. Analysis of the BMX6 Routing Protocol (Master's Thesis). Belgium: University of Antwerp, 2013.
- J. Chroboczek. The Babel Routing Protocol. RFC 6126 (Experimental). Updated by RFCs 7298, 7557. Internet Engineering Task Force, Apr. 2011. URL: http://www.ietf.org/rfc/rfc6126.txt.
- T. Clausen et al. The Optimized Link State Routing Protocol Version 2. RFC 7181 (Proposed Standard). Updated by RFCs 7183, 7187, 7188, 7466. Internet Engineering Task Force, Apr. 2014. URL: http://www.ietf.org/rfc/rfc7181.txt.
- [8] "IEEE Standard for Information Technology Telecommunications and information exchange between systems Local and metropolitan area networks – Specific requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications". In: IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007) (2012), pp. 1–2793.