

UNIVERSITY OF APPLIED SCIENCES

FUNKBASIERTE 3D-INDOORLOKALISIERUNG UNTER DER VERWENDUNG DES CHAN-HO-ALGORITHMUS

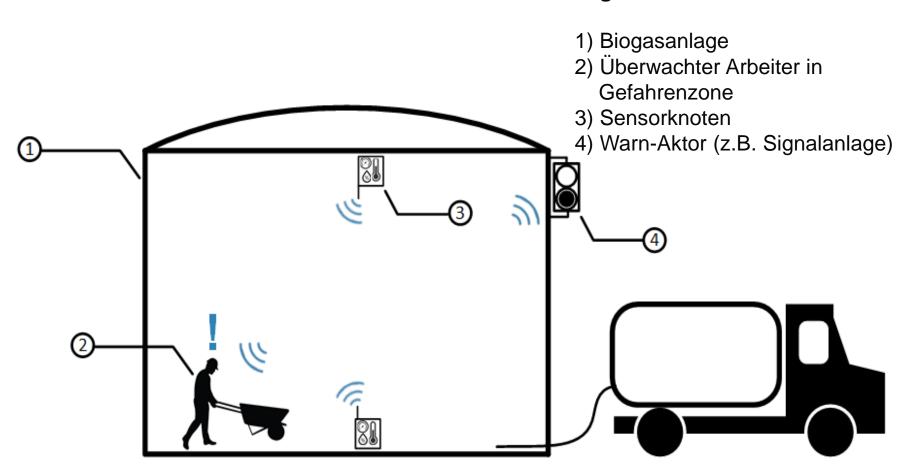
Labor für Technische Informatik

Timo Thurow Marco Schaarschmidt Clemens Westerkamp Chris Belchhaus

INHALTSVERZEICHNIS

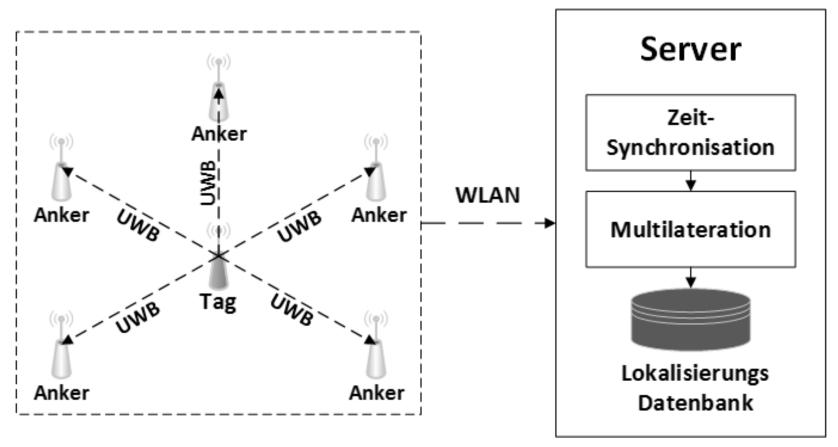
- Innovationsprojekt Ad-Hoc Vernetzung zur Gefahren-Erkennung und -Abwehr
- Ultrabreitband (UWB)
- Methoden der Positionsbestimmung
- Algorithmus und Zeitsynchronisation
- Systemarchitektur
- Aufbau des Labortests
- Evaluation der Messwerte
- Fazit und Ausblick

FORSCHUNGSPROJEKT: AD-HOC VERNETZUNG ZUR GEFAHRENERKENNUNG UND -ABWEHR



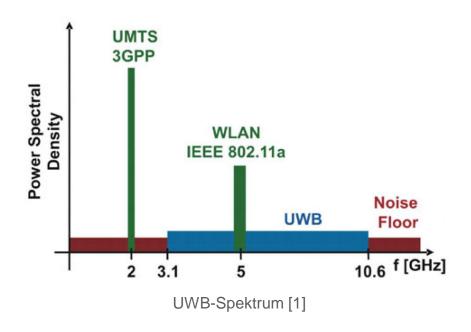
- Projektziele:
 - Flächendeckende Detektion und Gefahren-Erkennung durch Sensor-Netzwerke
 - 3D-Positionserfassung von Sensor-Knotenpunkten und Personen/Einsatzkräften mit einer Genauigkeit von ca. 30 cm
 - Sensordatenfusion bei der Erfassung der Höhe und Etagen in Gebäuden
- Vitaldatenerfassung und Datentransport über das Ortungssystem mittels UWB
 - Datenvisualisierung (Positions- und Vitaldaten) für Leitstelle
 - Automatisches Aussenden von Gefahren-Signalen an Personen-Hardware
- Gefördert im Niedersächsischen Innovationsprogramm (EFRE)
- Kooperation mit der neusta infomantis GmbH

FORSCHUNGSPROJEKT: AD-HOC VERNETZUNG ZUR GEFAHRENERKENNUNG UND -ABWEHR



Legende

SYSTEMARCHITEKTUR



- Anker = Ortsfester Referenzknoten
- Tag = Knoten unbekannter Position

ULTRABREITBAND (UWB)

- Hohe Unempfindlichkeit gegenüber störenden Einflüssen durch schmalbandige Technologien wie W-LAN oder Bluetooth
- Frequenzband: 3,1 10,6GHz
- Maximalen Sendeleitung: 41,3dBm/MHz

METHODEN DER POSITIONSBESTIMMUNG

- Time of Arrival (TOA)
 - Berechnung anhand absoluter Ankunftszeiten
- Time Difference of Arrival (TDOA)
 - Berechnung anhand von Zeitdifferenzen zwischen Ankunftszeiten der Nachrichten

	Norrdine / TWR (TOA)	Chan-Ho (TDOA)
Benötigte Anker für 3D Raum	>=4	>=5
Zeitsynchronisation benötigt	Nein	Ja
Maximale Anzahl Tags pro Zelle (Updaterate 10Hz, unsynchronisiertes ALOHA)	15 [3]	170 [4]

Vergleich TOA zu TDOA

ALGORITHMUS UND ZEITSYNCHRONISATION

- Im Projekt wird der Chan-Ho-Algorithmus eingesetzt:
 - Berechnung erfolgt nach der Methode der kleinsten Quadrate
 - Quadratische Korrektur anhand bekannter Grenzen wird durchgeführt
- Eine Zeitsynchronisation zwischen allen Ankern muss umgesetzt werden:
 - Ein Anker (SYNC-Anker) übernimmt die Rolle des Zeitgebers
 - Periodisches Aussenden von SYNC-Nachrichten mit Zeitstempel des SYNC-Ankers. Der Sendezeitpunkt wird an einen Server geschickt
 - Andere Anker empfangen diese Nachricht und senden diese mit eigenem Zeitstempel zum Server
 - Der Server berechnet einen Offset und einen Korrekturfaktor für jeden Anker relativ zur Uhr des SYNC-Ankers

ALGORITHMUS UND ZEITSYNCHRONISATION

- Es wird angenommen, dass in einem bestimmten Intervall n die Steigung der Zeitstempel einen linearen Verlauf aufweisen.
- Zur Korrektur eines Zeitstempels t_{blink} wird die Differenz zum letzten empfangen SYNC-Zeitstempel t_{sync} gebildet, der Offset D_T addiert und mit dem Korrekturfaktor α multipliziert.

$$t'_{blink_{n,i}} = \propto_{n,i} (t_{blink_{n,i}} - t_{sync_{n,i}} + D_{T_i})$$

• Der Offset D_T setzt sich aus der Signallaufzeit zwischen SYNC-Anker und dem Empfänger t_{l_i} und der doppelten Antennenverzögerung 2k zusammen

$$D_{T_i} = t_{l_i} + 2k$$

• Der Korrekturfaktor α ist die Steigung der Zeitstempel in dem Intervall n mit T_{sync_n} dem Sendezeitstempel und $t_{sync_{n,i}}$ dem Empfangszeitstempel des iten Ankers

$$\propto_{n,i} = \frac{\Delta T_{sync_n}}{\Delta t_{sync_{n,i}}} = \frac{T_{sync_n} - T_{sync_{n-1}}}{t_{sync_{n,i}} - t_{sync_{n-1,i}}}$$

AUFBAU DES LABORTESTS

- Eingesetzte Hardware: decaWave DW1000 UWB-Chip mit ARM Cortex M3, angebunden an einen Raspberry Pi (nur Anker)
- Raspberry Pi wird nur als Schnittstelle zum lokalen Netzwerk verwendet
- Messaufbau in einem rechteckigen Feld (5,85m x 4,55m)

Adresse	X-Position (in Meter)	Y-Position (in Meter)	Z-Position (in Meter)
0x1001	2,90	0,00	0,58
0x1002	0,00	4,55	1,72
0x1003	0,00	0,00	0,58
0x1004	5,82	0,00	1,72
0x1005	5,82	4,55	0,64
0x1006	2,90	4,55	0,58

AUFBAU DES LABORTESTS

EVALUATION DER MESSWERTE

- Definition von neun Messpunkten innerhalb der Ebene
- Für jeden Messpunkt wurden 100 Messungen durchgeführt und der Mittelwert mit Standardabweichung gebildet
- Messpunkte:

Position	X-Position (in Meter)	Y-Position (in Meter)	Z-Position (in Meter)
P0	1,45	1,14	0,70/1,00/1,30
P1	1,45	2,28	0,70/1,00/1,30
P2	1,45	3,41	0,70/1,00/1,30
P3	2,91	1,14	0,70/1,00/1,30
P4	2,91	2,28	0,70/1,00/1,30
P5	2,91	3,41	0,70/1,00/1,30
P6	4,36	1,14	0,70/1,00/1,30
P7	4,36	2,28	0,70/1,00/1,30
P8	4,36	3,41	0,70/1,00/1,30

Ergebnisse:

Höhe	ΔX (in Meter)	ΔY (in Meter)	ΔZ (in Meter)
0,70	0,16±0,09	0,20±0,07	0,19±0,22
1,00	0,24±0,12	$0,19\pm0,09$	0,30±0,23
1,30	0,16±0,14	0,14±0,20	0,49±0,23

FAZIT UND AUSBLICK

- Messfehler in X-Y Ebene liegt typ. unter 30cm
- Höherer Messfehler in Z Richtung
- Hoher Anstieg der Messfehler an Randbereichen (in der Nähe von Ankern)
- Potentielle Verbesserungen der Genauigkeit durch:
 - Ermittlung der Antennenparameter
 - Kalibrierung der Knoten
 - Sensorfusion (z.B. Luftdrucksensor) zur genaueren Höhenbestimmung
- Aufbau mit höherer Ausbreitung in Z soll betrachtet werden
- Non-line-of-sight (NLOS) Szenarien sollen noch betrachtet werden

Vielen Dank für Ihre Aufmerksamkeit

QUELLEN

- [1] N. Hadaschick, "Techniques for UWBOFDM,, ICE RWTH Aachen University. [Online]. Available: https://www.ice.rwthaachen.de/research/algorithmsprojects/entry/detail/techniques-for-uwb-ofdm/ [15.02.2018].
- [2] I. A. Mantilla Gaviria, "New Strategies to Improve Multilateration Systems in the Air Traffic Control" Ph.D. dissertation, Universitat Politècnica de València, 2013.
- [3] "DWM1001 System Overview And Performance", decaWave. [Online]. Available: https://www.decawave.com/content/dwm1001-system-overview-and-performance [15.02.2018].
- [4] "DW1000 User Manual", decaWave. [Online]. Available: https://www.decawave.com/content/dw1000-user-manual [15.02.2018].