Precise One-way Delay Measurement with Common Hardwareand Software

Maciej Muehleisen, Mazen Abdel Latif

28. VDE/ITG Fachtagung Mobilkommunikation

- Motivation
- Precise latency measurement
 - -Challenges
 - -Solutions
- Measurement setup
- Results
- Conclusion and outlook

Motivation

- Customers want to **evaluate & compare performance** of the systems they (want to) purchase
 - Themselves
 - By others (subcontractors / partners)
- Researchers want to publish quantitative results
- "ping" is the default latency evaluation tool, but is it accurate enough?
- More sophisticated solutions:
 - Complex so setup and/or
 - Require hardware support and/or
 - Expensive
- ➔ Create easy to deploy and use measurement tool

Precise latency measurement: challenges

- Specialized hardware
- Adjustments to operating system (OS)

- Non-real-time OSMulti-threading
- Time-sync for oneway latency measurements

• Cost / availability

Precise latency measurement: challenges & solutions

Measurement setup

Parameter	Value
Subcarrier spacing	30 kHz
Transmission Time Interval	0.5 ms
Time Division Duplex (TDD) Pattern	DDSU
TDD Special Slot Configuration	13:3:0
Antenna	Ericsson Radio Dot 4479
Frequency and bandwidth	3.7 GHz, 100 MHz

Parameter	Value
Packet size	50 Byte
Inter-packet spacing	20 ms
PC	Latte Panda 3 Delta 864
Modem	Quectel RM500q

Measurement setup

Parameter	Value
Subcarrier spacing	30 kHz
Transmission Time Interval	0.5 ms
Time Division Duplex (TDD) Pattern	DDSU
TDD Special Slot Configuration	13:3:0
Antenna	Ericsson Radio Dot 4479
Frequency and bandwidth	3.7 GHz, 100 MHz

Parameter	Value
Packet size	50 Byte
Inter-packet spacing	20 ms
PC	Latte Panda 3 Delta 864
Modem	Quectel RM500q

Application Phase-drifting Against TDD Frame

- Two decoupled systems will always "drift" (phase shift changes over time)
- Low variation of send intervals allows to systematically observe the drift
 - Network likely has more precise timing than application ($\epsilon' \ll \epsilon$)
- Allows to systematically "probe" periodic effects

Results: uplink latency

- *udp-ping* shows expected "swipe" through TDD frame
- *ping* does not clearly show such regular "swipe"
- Retransmission clearly visible in *udp-ping* result
 - Likely also in *ping* result
- *udp-ping*: 2.5 ms + 0.1 ms up to 4.5 ms + 0.2 ms
 - *ping* also shows lower values (theoretically
 2.5 ms impossible)
 - Some jitter in sender app and/or base station at transition from lowest to highest delay

Results: downlink latency

- *ping* again more random **and often larger latency**
- udp-ping reveals two stages of "tooth saws" from "swiping"
 - Larger one from TDD pattern
 - Smaller one from unknown source
 - Likely periodicities in base station or modem processing
- Theoretical minimum: 0.5 ms
- Actual minimum: 2.7 ms (+2.2 ms)
 - Processing at base station
 - Processing at receiving modem

Results: inter-packet spacing

- *udp-ping* transmits almost exactly every 20 ms
- *ping* is ±5 ms accurate for 80% (10% 90%) of the measurements
- Further inaccuracies from deriving timestamp and printing result possible for *ping*

Conclusion and outlook

Conclusion

- We developed and **published** a measurement tool and setup more precise than "ping"
- udp-ping enables one-way latency measurement with sub-millisecond precision

Next steps

- Use it to measure as many systems as possible
- Combine with network-side observations
- Compare with MoonGen
- Evolve for throughput measurements (first version available on request)

