

Project: KI-5G Förderkennzeichen: 220 21 005 Bundesministerium für Verkehr und digitale Infrastruktur BalticFuturePort (165GU056F) 5G-TELK-NF (165GU135L)

5G COVERAGE MEASUREMENTS INSIDE A VESSEL DURING THE UNLOADING AND LOADING IN THE HARBOR

Fabian John and Claudius Noack and Horst Hellbrück

28. ITG Fachtagung Mobilkommunikation, Osnabrück (MKT'24)

1. Task Description

COSA Center of Excellence

Research Project Baltic Future Port

- Installation of a 5G Campus Network
- Real-time data exchange
- Logistics applications
- Digital twins
- Monitor the flow of cargo

Goal: Optimization of the Harbor Logistics

- ✓ Reduce unused storage space
- ✓ Accelerating the movement of cargo
- ✓ Reduce costs and increase profit

5G Advantages

- Licensed frequency band
- Higher coverage range and Tx power compared to WiFi6

Problem: How do we expand the 5G network to ensure wireless communication links inside the vessel?

Coverage Map (Simulated) for Lübeck Harbor - Skandinavienkai

2. Hypotheses

Hypothesis 1:

By directing the antenna with a high transmission power of 5 W towards the vessel's hull, the transmitted signal strength is sufficient for communication over 5G at the relevant positions for loading and unloading.

Hypothesis 2: By directing the antenna with 5 W power towards the open stern ramp during loading and unloading, the signal penetrates the vessel's interior through the effect of multi-path propagation for sufficient communication over 5G at the relevant positions for loading and unloading.

3. Measurement Strategy

- Measurements were performed with COTS UE (Samsung Galaxy S21)
- 3 positions outside, 3 positions at the main deck, and 3 positions at the lower deckMeasurement of RSRP values
- Sporadic/additional throughput measurements with iperf3 (TCP for 60 s, 10 s omitted)
- Measurement of 5G Networks:
 - Public mobile network operator (5G-NSA)
 - Installed 5G campus network (5G-SA)
 - Portable 5G Network / TH Lübeck Trailer in P1 (5G-SA)
 - Portable 5G Network / TH Lübeck Trailer in P2 (5G-SA)

3. Measurement Strategy

- Hydraulic antenna height up to 16 m
- RRU 5 W Tx Power + 15 dBi directional antenna
- 100 MHz bandwidth, TDD adaptable
- Workplace with monitor and equipment
- Autonomous operation with batteries (2.4 kWh → ~5h independent from external power supply)
- 5G SA system with open5Gs core

THL 5G Trailer

Hydraulic Antenna (max. 16 m height)

4. Results

Deck	Μ	RSRP in dBm					
		PMNO	Inst. 5G SA	THL P1	THL P2		
Outside	M1	-100	-114	-84			
	M2	-101	-109	-71			
	M3	-101	-104	-84			
Main deck	M4	-113	-129	NC	-89		
	M5	-105	-123	-120	-80		
	M6	-118	-138	-131	-91		
Lower deck	M7	-111	-132	NC	-95		
	M8	-116	-131	NC	-94		
	M9	-110	-126	NC	-90		

Quality RSRP range in dBm
Excellent > -90
Good -90 to -105
Fair -106 to -120
Poor < -120

RSRP measurement results for: Public Mobile Network Operator (PMNO); Harbor Installed 5G SA Campus Network; THL 5G Trailer in P1 and P2 NC: Not connected

4. Results

Deck	Μ	RSRP in dBm						
		PMNO	Inst. 50	g sa	THL P1	ТН	L P2	
Outside	M1	iperf:]	iperf:			
	M2	Uplink: 13.9 M	Bit/s		Uplink: 51.9 MI			
	M3	Downlink: 240 MBit/s			Downlink: 328 MBit/s			
Main deck	M4							
	M5				-120		-80	
	M6	Internet Speed Test:		7	iperf:			
Lower deck	M7	Uplink: 0.09 MBit/s			Uplink: 29.3 MBit/s			
	M8							
	M9			-126			-90	

4. Discussion

Hypothesis 1:

By directing the antenna wit **Not confirmed**er of 5 W towards the vessel's hull, the transmitted **Not confirmed** It for communication over 5G at the relevant positions for loading and unloading.

Hypothesis 2: By directing the antenna with 5 W power towards the open stern ramp during loading and unloac through the effect of multi-path **Confirmed** fficient communication over 5G at the relevant positions for loading and unloading.

P2

5. Conclusion and Future Work

Problem: How do we expand the 5G network to ensure wireless communication links inside the vessel?

Conclusion

- Investigation of antenna positions based on 2 formulated as hypotheses
- First study/measurements were performed for existing networks and the portable THL network
- Results confirmed our second hypothesis (signal propagation via the open stern ramp)
- Presence of the existing 5G-SA network inside the vessel was unexpected

Next Steps

- Follow-up measurement with the 5G-SA network in P2 to create heatmaps for RSRP, Uplink, and Downlink inside the vessel
- Prepare automated measurement systems (with indoor localization)
- Investigate the signal quality inside the vessel during unloading and loading of the vessel

Thanks for your attention!

