

Towards a Weather-Based Prediction Model For Starlink Throughput

Presented by Simon Beginn

Authors: Alexander Böckenholt, Simon Beginn, Dominic Laniewski, Eric Lanfer....

Image: https://satellitemap.space/

General Motivation of Prediction Models

Potential link prediction applications

- Schedulers for edge/cloud computing
- Proactive approaches (instead of reactive) for link reconfiguration

High interest in general performance (measurements, simulations)

Similar work exists for mobile network performance

Starlink: What's that?

- Rapid expanding collection of Low-Earth-Orbit (LEO) Satellites
- High bandwidth, low latency
 Inter-Satellite Routing available
- Worldwide consumer level access to the internet

Starlink operates in low orbit

Low-Earth orbit satellites can link to Earth faster, but more are needed to provide coverage

Starlink dish

Why weather-based prediction specifically on Starlink?

Satellite links are generally susceptible to environmental influences

- Space-Events
- Weather-Effects
- Local Environment

Similar work suggest severe impact on performance

- Rain
- Sun flares

Overview WetLinks Dataset

About 140k datapoints covering network performance

Covers about six months

Supports Deutscher Wetterdienst (DWD) data integration

Represents largest and most complete Starlink dataset to date

Also includes...

- Round-Trip-Time (RTT)
- Packet Loss Rate (PLR)
- Traceroutes
- Weather Data (DWD, on-site)

root@vm952:~/collector# ls export

cloud_pictures	cws_sensors.csv	froggit.txt	net_iperf.csv	net_ping.txt	starlink.csv
cws_clouds.csv	cws_sensors.txt	metadata.csv	net_iperf.txt	net_traceroute.csv	starlink.txt
cws clouds.txt	froqqit.csv	metadata.txt	net ping.csv	net traceroute.txt	

Pv4 UDP throughput

of down- and uplink

using iperf3

IPv4 round trip time

and packet loss

using ping

Every six minutes:

IPv4 routing

using MTR

Uni Twente

Uni Osnabrück

WetLinks in our context

Which sides were used?

- University of Osnabrück
- DWD
- Cloud-Pictures on-site

Time coverage? 4 months.

Utilized features from the dataset

- Environment data (temperature, wind, pressure)
- Cloud information and rain (extended by DWD)
- Image statistics (color channel details)

DWD Data

Custom Weather Station with Sky Camera

6

Methodology: Pre-Processing and Models

Pre-processing of dataset

- Started with >500k datapoints in different locations
- Completed with about 1.1k datapoints in one dataset

Models (primarily decision trees)

- Random Forest
- Gradient Boosting
- AdaBoost
- K-nearest-Neighbor
- MTR-Regressor
- (Dummy Regressor)

Methodology: Evaluation and Tuning

Metrics

- **R²** "How well does it fit?"
- Mean Absolute Error (MAE) "Mean average absolute error?"
- Root Mean Squared Error (RMSE) "Square root of errors squared?"

Groups and Training-Subsets

Fine-Tuning via Grid Search

- Max-Features
- Min-/Max- Samples per split
- Estimators

Prediction Results: MAE, RSME and R²

Download

Prediction Results: Feature Importance

10

5

-15 -10

-5

0

SHAP value (impact on model output)

Results in context of other works

Mobile Network Prediction: What did they do?

- Our R² is similar around 0.5¹ for ensemble methods
- They also utilized Support-Vector-Machines and Gaussian-Process-Regression, which yielded in better scores (around 0.65)

What can we tell about our result quality?

- Achieved similar performance with comparable models
- More data is needed (requiring a bigger dataset)
- Other models should be explored

¹This is comparing their prediction, based on signal strength (db), with our throughput prediction (MB/s)

Conclusion

Able to reproduce similar prediction performance on download throughput

- Rain is the most important feature (as expected)
- Cloudiness seems to be less important, but image statistics suggest otherwise

Upload throughput does not seem to be impacted by weather-conditions

More complete dataset will prove useful

• we saw 20% improvement by adding just one more month (from 3 months)

Neural Networks did not converge on our data

Future Work

Reduced amount of models were used due to quick turnarounds needed

• Reference work suggest better predictions with highly increased training resources

Further parameter tuning is recommended (due to more accessible data)

More in depths Dataset-/Prediction-Model demo:

At IFIP Networking 2024 in Greece

...and here 😉

