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General Motivation of Prediction Models

Potential link prediction applications

e Schedulers for edge/cloud computing
e Proactive approaches (instead of reactive) for link reconfiguration

High interest in general performance (measurements, simulations)

Similar work exists for mobile network performance

[8, 9, 12-15], [4, 10, 1] 2
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Starlink: What’s that?

. . . Starlink operates in low orbit
e Rapid expanding collection of Low-Earth orbit satellites can link to Earth faster, but more are
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Why weather-based prediction specifically on Starlink?

Satellite links are generally susceptible to environmental influences

e Space-Events
e \Weather-Effects
e Local Environment

Similar work suggest severe impact on performance

e Rain
e Sun flares

[12, 13] 4



Overview WetLinks Dataset

About 140k datapoints covering network performance

Covers about six months
Supports Deutscher Wetterdienst (DWD) data integration

Represents largest and most complete Starlink dataset to date
g
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WetLinks in our context

Which sides were used?

e University of Osnabrlck
e DWD
e Cloud-Pictures on-site

Time coverage? 4 months.
Utilized features from the dataset

e Environment data (temperature, wind, pressure)
e Cloud information and rain (extended by DWD)
e Image statistics (color channel details)

Custom Weather Station

with Sky Camera




Methodology: Pre-Processing and Models

Pre-processing of dataset

e Started with >500k datapoints in different locations
e Completed with about 1.1k datapoints in one dataset

Models (primarily decision trees)

Random Forest
Gradient Boosting
AdaBoost
K-nearest-Neighbor
MTR-Regressor
(Dummy Regressor)

[3,16,7,5,17]




Methodology: Evaluation and Tuning

Metrics

e R?*“How well does it fit?”
e Mean Absolute Error (MAE) “Mean average absolute error?”
e Root Mean Squared Error (RMSE) “Square root of errors squared?”

Groups and Training-Subsets
Fine-Tuning via Grid Search

e Max-Features
e Min-/Max- Samples per split
e Estimators



Prediction Results: MAE, RSME and R?

MAE and RMSE Values

Model Performance Metrics (Sorted by R2) Model Performance Metrics (Sorted by R2)
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Actual vs Predicted Values with Regression Line
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Prediction Results: Feature Importance
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Results in context of other works

Mobile Network Prediction: What did they do?

e Our R?is similar around 0.5 for ensemble methods
e They also utilized Support-Vector-Machines and Gaussian-Process-Regression,
which yielded in better scores (around 0.65)

What can we tell about our result quality?

e Achieved similar performance with comparable models
e More data is needed (requiring a bigger dataset)
e Other models should be explored

'"This is comparing their prediction, based on signal strength (db), with our throughput prediction (MB/s)
[6] 12
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Conclusion

Able to reproduce similar prediction performance on download throughput

e Rain is the most important feature (as expected)
e Cloudiness seems to be less important, but image statistics suggest otherwise

Upload throughput does not seem to be impacted by weather-conditions
More complete dataset will prove useful
e we saw 20% improvement by adding just one more month (from 3 months)

Neural Networks did not converge on our data

(9,12, 13] 13



Future Work

Reduced amount of models were used due to quick turnarounds needed

e Reference work suggest better predictions with highly increased training
resources

Further parameter tuning is recommended (due to more accessible data)
More in depths Dataset-/Prediction-Model demo:
At IFIP Networking 2024 in Greece

...and here (& ‘
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