Forschungsdatenbank
der Hochschule Osnabrück
Alle öffentlich geförderten Forschungsprojekte von A - Z
Alle Forschungsprojekte, die zentral erfasst wurden, befinden sich in unserer Forschungsdatenbank. Sie können nach Stichwörtern suchen oder Ihre Suche durch das Setzen von Filtern eingrenzen. Bei Fragen zur Forschungsdatenbank sprechen Sie bitte Svenja Knüppe an.
Suchen
Geben Sie mindestens 3 Zeichen ein
Fakultät
Drittmittelgeber
Forschungsschwerpunkte
Laufzeit
- Projektlaufzeit:
- 01.12.2023 - 31.12.2024
- Antragsteller/in:
- Prof. Dr. Ralf Tönjes
- Drittmittelgeber/Förderlinie:
- BMDV
- Fakultät:
- IuI
- Fördersumme:
- 424.265,64 €
- Projektpartner extern:
- ADVES GmbH & Co. KG, MECSware GmbH, Universität Osnabrück
- Projektzusammenfassung:
Beim Spot-Farming werden Sensorsysteme, Drohnen und Agrarroboter eingesetzt, um effizient und nachhaltig Landwirtschaft zu betreiben. Die dafür benötigte drahtlose Kommunikation kann mit dem 5G-Mobilfunkstandard umgesetzt werden. Häufig ist die Abdeckung landwirtschaftlicher Nutzflächen durch das Mobilfunknetz in Deutschland jedoch nicht ausreichend. Um trotzdem Spot-Farming mit 5G betreiben zu
können, besteht die Möglichkeit der Verwendung eigener 5G-Netze, sogenannter Campusnetze.Ziel von ENCAMPS ist es, Spot-Farming mit nomadischen, also örtlich ungebundenen, 5G-Campusnetzen zu ermöglichen. Schwerpunkte sind hier die Automation der Konfiguration der Basisstationen, die Entwicklung einer zuverlässigen Verbindung zum Internet und die dynamische Migration zwischen Edge und Cloud-Ressourcen. Die Entwicklungen von ENCAMPS befähigen landwirtschaftliche Betriebe dazu, ihr
eigenes Ad-hoc-5G-Campusnetz automatisiert aufzubauen, um damit Spot-Farming zu betreiben.Die Hochschule Osnabrück ist für die Realisierung der Automation der Konfiguration und des Monitorings des Campusnetzes verantwortlich. Aktuell verfügbare 5G-Schnittstellen kommen oftmals aufgrund von zu hoher Komplexität für die Anwender*innen nicht zum Einsatz. Um die Komplexität mittels Automation gering zu halten, werden zunächst 5G-Kern- und Zugangsnetz entsprechend der Anwendungsfälle vorkonfiguriert. Danach folgt die automatisierte Übersetzung der anwendungsspezifischen Anforderungen in zugehörige Netzkonfigurationen und 5G-Qualitätsmetriken. Beim Monitoring werden Netzparameter, Basisstationskonfiguration und topographische Daten aufgezeichnet. KI kann diese als Trainingsdaten für die sukzessive Optimierung der Konfigurationseinstellungen verwenden. Das entwickelte 5G-Campusnetz soll dann zunächst auf dem Testfeld und daraufhin in realitätsnaher landwirtschaftlicher Umgebung aufgebaut, erprobt und bewertet werden.
- Logo Fördermittelgeber: