Knowledge Engineering
Knowledge Engineering: Umsetzung des Wissensmanagement
Der Entwurf und die Weiterentwicklung von Wissensmanagementsystemen umfasst unter anderem folgende Teilschritte:
Modellierung meines Unternehmenswissens
- Wie kann ich mein Unternehmenswissen strukturieren?
- Bsp.: Einsatz von Ontologien und Topic Maps
Modellierung meiner wissensintensiven Prozesse
- wissensintensive Geschäftsprozesse sind solche Geschäftprozesse, die ein hohes Maß an Wissen benötigen und Wissen verarbeiten
- Bsp.: Produktentwicklungsprozess bei einem Automobilhersteller
Ausgestaltung der Hauptfunktionen von WM-Systemen
- die Anforderungen an typische Hauptfunktionen müssen spezifiziert werden
- die Funktionen müssen durch Methoden und Verfahren z.B. der Business / Process Intelligence, Data Mining, Business Rule Management, Semantic Web umgesetzt werden
Bsp.: Learning Management System für Social CRM
Die Learning System Method for intelligent SCRM zeigt einen Weg zur Entwicklung eines intelligenten und wissensbasierten Systems für das Social CRM auf.
- Fact Knowledge: das System beinhaltet Basiswissen über sein Anwendungsgebiet: z.B. im Social CRM den Social Graph und weiteres Wissen über die Beziehungen von Akteuren
- Ontology: die Ontologie repräsentiert aktuelles Wissen und deren Zusammenhänge
- Rule Knowledge: mit Hilfe von Regeln lässt sich neues Wissen generieren und Handlungen ableiten
- Process Intelligence: mit Hilfe von Wirkmustern zur Selbstoptimierung lernt das wissensbasierte System neues Wissen im laufenden Betrieb.
- Methods Intelligence: mathematisch-statistische Verfahren ermöglichen die Entdeckung neuer Erkenntnisse
Publikationen
- SCHMIDT, ANDREAS; HOYER, JULIUS: Learning Systems Methods for intelligent SCRM. In: Gronau, N., Lehrstuhl für Wirtschaftsinformatik und Electronic Commerce, Universität Potsdam (Hrsg.): ERP Management 10 (2014) 2, GITO mbH Verlag, 2014, S. 33-36
- SCHMIDT, A.; HOYER, J.: Squared Crowdsourcing Intelligence: ein Ansatz zur integrierten Experten-Data-Mining Analyse neuer Technologien für die frühen Phasen der Produktinnovation. In: Gausemeier, J. (Hrsg.): Vorausschau und Technologieplanung. HNI Verlagsschriftenreihe, Band 318, Paderborn, 2013, S. 117-137
- SCHMIDT, A.: Wirkmuster zur Selbstoptimierung – Konstrukte für den Entwurf selbstoptimierender Systeme. HNI-Verlagsschriftenreihe, Paderborn, Band 204, 2006